Spline Interpolation and Wavelet Construction
نویسندگان
چکیده
منابع مشابه
Spline Interpolation and Wavelet Construction
The method of Dubuc and Deslauriers on symmetric interpolatory subdivision is extended to study the relationship between interpolation processes and wavelet construction. Refinable and interpolatory functions are constructed in stages from B-splines. Their method constructs the filter sequence (its Laurent polynomial) of the interpolatory function as a product of Laurent polynomials. This provi...
متن کاملConstruction of fractional spline wavelet bases
We extend Schoenberg's B-splines to all fractional degrees α > − 2 . These splines are constructed using linear combinations of the integer shifts of the power functions x+ α (one-sided) or x * α (symmetric); in each case, they are αHölder continuous for α > 0. They satisfy most of the properties of the traditional B-splines; in particular, the Riesz basis condition and the two-scale relation, ...
متن کاملA Local Construction for Nonuniform Spline Tight Wavelet Frames
We present a construction for tight wavelet frames for nonuniform spline type spaces. Our basic requirement is that the twoscale matrices are row stochastic as this admits the local construction of a set of framelets for each scaling function. The framelets have one vanishing moment, small support, and can be designed to have symmetry properties. We apply our method to univariate splines and to...
متن کاملOptimized Spline Interpolation
In this paper, we investigate the problem of designing compact support interpolation kernels for a given class of signals. By using calculus of variations, we simplify the optimization problem from an infinite nonlinear problem to a finite dimensional linear case, and then find the optimum compact support function that best approximates a given filter in the least square sense (l2 norm). The be...
متن کاملConvergence of Integro Quartic and Sextic B-Spline interpolation
In this paper, quadratic and sextic B-splines are used to construct an approximating function based on the integral values instead of the function values at the knots. This process due to the type of used B-splines (fourth order or sixth order), called integro quadratic or sextic spline interpolation. After introducing the integro quartic and sextic B-spline interpolation, their convergence is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 1998
ISSN: 1063-5203
DOI: 10.1006/acha.1997.0232